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Abstract
Introduction. The article considers the issues of mine drainage study, including the working processes 
of the centrifugal pumps pumping “unclarified” water in arduous underground conditions. Such 
problems resolution is of high practical and scientific importance.
Methods of research. Scientific and practical experience in the field of mine drainage was analyzed and 
generalized. The centrifugal pump modes were considered and promising research tasks in this field 
were outlined. Thus, the continuous income of groundwater to mine workings requires the uninterrupted 
operation of pumps. One of the most common types of mine-drainage plants is a multistage centrifugal 
pump which fulfills its functions to the full if properly operated. However, “unclarified” water pumping 
requires a new technique for centrifugal pump optimal modes determination in such service conditions.
Result and analysis. The study of hydraulic, volumetric, and mechanical efficiency dependency on pump 
modes, the analysis of working processes within centrifugal pumps when operating on “unclarified” 
water, and the procedure and calculation of TsNS (multistage centrifugal pump) head-capacity curve 
were presented in the paper to justify the effectiveness of the presented solutions and conclusions.
Scope of results. It is recommended that the research results are introduced in all enterprises conducting 
underground mining operations with the mine drainage.

Keywords: shaft centrifugal pumps; optimal modes; efficiency factor; head-capacity curve; hydraulic 
losses; speed coefficient.

Acknowledgements: The research was funded from the Grant of the President of the Russian 
Federation no. MD-3602.2021.1.5.

Introduction. Effective and safe operation of underground mines depends on the 
proper operation of the mine-drainage system that dewaters the mine [1]. Mine drainage 
is the most important secondary process of underground ore mining because the 
malfunction of pumps reduces mining safety and increases the running expenses within 
the cost of production. It is common knowledge that the increase in mineral extraction 
volume results in a higher concentration of mining operations, increased extent of mine 
workings and the depth of mining, and, as a consequence, increased water inflow  
to mine workings. The efficiency of water drainage, in its turn, depends not only on 
hydrogeological and mine engineering factors but also on the mine-drainage plants 
applied. Underground water-collecting hollows (sumps) should be regularly clarified 
from debris so that the mine-drainage plant functions properly [2]. Untimely cleaning of 
pumping plant sumps results in the active capacity reduction and pumped water 
contamination with debris, which reduces the pump overhaul period by 2 or 3 times. 
Besides, sump cleaning is currently a complex and labor-intensive technological process 
associated with partial flooding of a mine working and requiring the removal of load and 
haul machines from service, which reduces the efficiency of mining [3]. The cost of 
power resources grows and creates a need for new energy-saving technologies 
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development for both mine water pumping and water-collecting hollows cleaning.  
So, it is highly relevant for the enterprises that perform underground mining operations  
to increase mine drainage operational efficiency and develop effective mine water 
pumping technologies and water-collecting hollows clean-up facilities [4].

Multistage centrifugal pumps with each stage consisting of an impeller and a guide 
vane are most common in mine drainage practices. Not a single existing pump is capable 
of transforming all the power obtained from the electric motor into useful efficiency.  
This circumstance is due to major losses caused by several negative effects within  
the pump [5]. 

The efficiency factor η indicates which part of shaft power Nsh (motor power) is used 
by the pump to obtain the useful efficiency Nu, i.e. for liquid motion through the pipeline: 
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where ρ is the density of the liquid, kg/m3; Q and H are the effective capacity and head 
of the pump, m3/s and m respectively. 

In its turn, the efficiency factor of the centrifugal pump depends on pump capacity. 
Pump capacity at which the efficiency factor is maximum is called optimal. The 
regime of pump operation under the optimal capacity is also called optimal (Figure 1). 

To calculate the general efficiency factor of the pump more accurately, it is 
necessary to consider the negative effects within the pump that reduce its power. The 
essence of such processes is exacting and is going to be considered further in the 
paper. The main aim at the stage of pump design is to reduce the negative effects by 
developing a design that ensures lower power losses [5–7]. 

The impact of the negative effects on the pump efficiency is estimated with the 
help of the volumetric, hydraulic, and mechanical efficiency factors and calculated by 
the formula: 
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theoretical capacity Qth which is the volume of the liquid flowing through the impeller 
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Effective capacity is lower than the theoretical since a part of liquid passing 

through the impeller doesn’t enter the pipeline but percolates between the body and 
the impeller and re-enters the impeller. Thus, a particular amount of liquid uselessly 
circulates within the pump. It is possible to improve the efficiency factor by applying 
an improved groove seal [6–8]. 

The preliminary value of volumetric efficiency for centrifugal pump operating in 
optimal regime is determined by the formula: 
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where ns is the speed coefficient.  
Speed coefficient is the criterion of two pumps similitude that operate in optimal 

regimes [9]. Speed coefficient of the pump which develops head H, m, in the optimal 
regime, and capacity Q, m3/s, and the impeller of which rotates with frequency n, rpm, 
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Рисунок 1. Определение оптимального режима работы насоса 
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Рисунок 1. Определение оптимального режима работы насоса

In its turn, the efficiency factor of the centrifugal pump depends on pump capacity. 
Pump capacity at which the efficiency factor is maximum is called optimal. The regime 
of pump operation under the optimal capacity is also called optimal (Figure 1).

To calculate the general efficiency factor of the pump more accurately, it is necessary 
to consider the negative effects within the pump that reduce its power. The essence of 
such processes is exacting and is going to be considered further in the paper. The main 
aim at the stage of pump design is to reduce the negative effects by developing a design 
that ensures lower power losses [5–7].

The impact of the negative effects on the pump efficiency is estimated with the help of 
the volumetric, hydraulic, and mechanical efficiency factors and calculated by the 
formula:
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Qth which is the volume of the liquid flowing through the impeller per second, and is 
determined by the formula:
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Effective capacity is lower than the theoretical since a part of liquid passing through 

the impeller doesn’t enter the pipeline but percolates between the body and the impeller 
and re-enters the impeller. Thus, a particular amount of liquid uselessly circulates within 
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Speed coefficient is connected with the ratio of the impeller inlet and outer diameters, 

i.e. it defines the structural type of the pump.
Speed coefficient provides an idea of the efficiency factor of the pump working in 

an optimal mode. More precisely, the higher the speed coefficient, the more space-
saving the pump and its efficiency factor are. Pumps with high speed coefficient are 
therefore more efficient.

Hydraulic efficiency factor is the ratio between the effective capacity H actually 
developed by the pump and the theoretical head Нth that would be developed by the pump 
without any hydraulic losses:
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Statistical data reveals that the values of the mechanical efficiency factor of the 

centrifugal pumps operating in the optimal mode are within the interval of 0.92 and 
0.99. For this reason, for preliminary calculation, it is accepted that ηm = 0.96. 
However, this value is correct for water pumping [10, 11].  

Considering the expressions, the general efficiency factor of the pump in the design 
is calculated by the formula [12]: 
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The content of debris in water influences each separate indicator of the efficiency 

factor. Their impact on the total efficiency factor, therefore, requires practical and 
scientific estimates. 

Materials and methods. The head-capacity curve of a pump gives an idea of the 
pump’s capabilities and depends not only on the pumped liquid density but also on its 
viscosity. The higher the viscosity, the lower the head-capacity curve is constructed. 

                                                             (6)

   
Hydraulic losses are conditioned by liquid friction against the surface of the pump and 

friction in the vortex flux perturbations. Vortex perturbations are conditioned by the 
following:

– flux impact on the blades. Liquid flow initially moving progressively runs against 
the rotating blades and undergoes the impact, which results in strong vorticity;

– blade stall. In the ducts between the blades, liquid outflow from the surface of a 
blade towards an adjacent blade is recorded, which conditions the development of vortices 
in the ducts between the blades;

– turns, narrow and wide spots inside the body. The variation of velocity and direction 
of liquid fluxes in turns, narrow and wide spots inside the body cause the development of 
vortices.



 “Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal”. No. 6. 2021 ISSN 0536-102816

Figure 2. The coeffi  cients of pump characteristics recalculation from water to viscous liquids
Рисунок 2. Коэффициенты пересчета характеристик насоса с воды на вязкие жидкости
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Mechanical effi  ciency factor is the ratio between the blades power and shaft power or, 
in other words, mechanical losses composed of friction losses in bearings, stuffi  ng boxes, 
and balancing rings of the impeller, as well as losses of the impeller external surface 
friction against the liquid:
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diameters, i.e. it defines the structural type of the pump. 
Speed coefficient provides an idea of the efficiency factor of the pump working in 

an optimal mode. More precisely, the higher the speed coefficient, the more space-
saving the pump and its efficiency factor are. Pumps with high speed coefficient are 
therefore more efficient. 

Hydraulic efficiency factor is the ratio between the effective capacity H actually 
developed by the pump and the theoretical head Нth that would be developed by the 
pump without any hydraulic losses: 
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should therefore be recalculated (reconstructed) according to a particular method to pump 
the liquid with the viscosity diff erent from the viscosity of water [9–11, 13] (Hydraulic 
vehicle design guide (for construction norms and regulations SNiP 2.05.07-85) / 
Promtransniiproekt. Moscow: Stroiizdat; 1988). 

The characteristics of the pump tested on water are recalculated to determine its indicators 
when pumping liquids with higher viscosity in accordance with GOST 6134 – 2007 
“Rotodynamic pumps. Test methods”.

Figure 2 presents the nomogram from GOST 6134 – 2007 for determining the obtained 
water characteristic recalculation coeffi  cient when pumping viscous liquid. Values 
presented in Figure 2 are obtained as a result of Hydraulic Institute Standards (HIS) 
testing.

The procedure of working with the nomogram is as follows: it is necessary to fi nd the 
value corresponding to the optimal capacity on the lower scale of the nomogram (capacity 
Q, m3/s) and go up to the value of the head (per one pump stage) in the optimal capacity 
mode, then move horizontally (left or right) up to the required viscosity value, and after 
that in an upward direction again to the intersection with the curves of the recalculation 
coeffi  cient CQ, CH = f (Q), as shown by the dotted line in Figure 2. The points of the 
dotted line and the indicated dependencies intersection will determine the values of 
coeffi  cients CQ, CH.
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where Р1, Р2 are the pressures in feed and receiver tanks, kPa; ρliquid is the density of 
the pumped liquid, t/m3; λsuction, λpressure is the friction factor of the suction and pressure 
pipelines respectively; lsuction, lpressure is the length of the respective pipelines, m, lsuction 
= 164.85 m; lpressure = 1730.28 m; dsuction, dpressure is the diameter of the suction and 
pressure pipelines, m; Σξsuction, Σξpressure is a total of the coefficients of all local 
resistances in the suction and pressure pipelines. 
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where Р1, Р2 are the pressures in feed and receiver tanks, kPa; ρliquid is the density of 
the pumped liquid, t/m3; λsuction, λpressure is the friction factor of the suction and pressure 
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An example of constructing a head-capacity curve is presented below. Initial data for 

viscous liquid at a 260 m horizon are as follows: the normal water inflow is 426.5 m3/h, 
the maximum water inflow is 527 m3/h.

Table 1. Rated data of the 260 m horizon external network  
Таблица 1. Данные расчета внешней сети горизонта 260 м 

Indicator 
Point number 

1 2 3 4 5 

Q, m3/h 0 75 150 225 300 
Н, m 267.00 288.21 351.83 457.86 606.30 

 

 The design head of multistage centrifugal pump TsNS(K) 300-360 installed at a given 
horizon is calculated using the following formula (with certain restrictions):
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where Р1, Р2 are the pressures in feed and receiver tanks, kPa; ρliquid is the density of 
the pumped liquid, t/m3; λsuction, λpressure is the friction factor of the suction and pressure 
pipelines respectively; lsuction, lpressure is the length of the respective pipelines, m, lsuction 
= 164.85 m; lpressure = 1730.28 m; dsuction, dpressure is the diameter of the suction and 
pressure pipelines, m; Σξsuction, Σξpressure is a total of the coefficients of all local 
resistances in the suction and pressure pipelines. 
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where Р1, Р2 are the pressures in feed and receiver tanks, kPa; ρliquid is the density of 
the pumped liquid, t/m3; λsuction, λpressure is the friction factor of the suction and pressure 
pipelines respectively; lsuction, lpressure is the length of the respective pipelines, m, lsuction 
= 164.85 m; lpressure = 1730.28 m; dsuction, dpressure is the diameter of the suction and 
pressure pipelines, m; Σξsuction, Σξpressure is a total of the coefficients of all local 
resistances in the suction and pressure pipelines. 
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The rated value of linear hydraulic resistance coefficients for the pipelines is found by 
the formula: 
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D
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where D is the diameter of the pipeline, m. 

Thus, λsuction = 0.0347; λpressure = 0.02878. 
As a result, we get a dependency of the mine-drainage plant network for one pump 

per column: Нc = 267 + 0.00377Q2. 
We summarize the calculation data for the external network in Table 1. 
Further, correction factors are determined to recalculate the head-capacity curve of 

the TsNS(K) 300-360 pump operating on water. 
According to the graph (Figure 3), at the point where external network and pump 

characteristics intersect, head and capacity values per one pump stage are as follows: 
H1 = 60 m, Q1 = 290 m3/h = 0.8 m3/s. 

We determine the correction factors CQ = 0.88; CH = 0.87 through the nomogram 
(Figure 2). 

Results and discussion. After the correction factors and external network data 
have been determined, the pressure characteristic of the 260 m horizon is 
reconstructed when pumping “unclarified” water (Figure 4). Pump performances are 
recalculated, and the results are summarized in Table 2. 

It should be noted that to construct the head-capacity characteristic curve (Figure 
4), the calculations were carried out under the condition that the pump was new and 
not subject to wear. When operating on “unclarified” water [12–15], the real 
characteristic of the pump will rest even lower along the y-axis. 

Conclusion. The research results are as follows: 
– when the pump operates on “unclarified” water, the actual mode is beyond the 

optimal zone of the pump; 
– if productivity falls, the operating time of all dewatering pumps increases by 

three times due to the constant water inflow; 
– if the depth and productivity of the mine and therefore water inflows increase, the 

risk and threat of flooding increases (the time for pumping out normal water inflow is 
20 hours, and the enterprise will require additional measures to increase the drainage 
capacity, which will lead to additional capital costs). 

As a result of the calculation, it can be concluded that the multistage centrifugal 
pumps TsNS operation on “unclarified” water is unsafe and requires technical and 
technological measures to clarify the water before it enters the pumps. 
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воды 
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As a result, we get a dependency of the mine-drainage plant network for one pump per 
column: Нc = 267 + 0.00377Q2.

 
Figure 4. The head-capacity curve of the 260 m horizon for “unclarified” water 
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воды 
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We summarize the calculation data for the external network in Table 1.
Further, correction factors are determined to recalculate the head-capacity curve of the 

TsNS(K) 300-360 pump operating on water.



 “Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal”. No. 6. 2021 ISSN 0536-102820

According to the graph (Figure 3), at the point where external network and pump 
characteristics intersect, head and capacity values per one pump stage are as follows:  
H1 = 60 m, Q1 = 290 m3/h = 0.8 m3/s.

We determine the correction factors CQ = 0.88; CH = 0.87 through the nomogram 
(Figure 2).

Results and discussion. After the correction factors and external network data have 
been determined, the pressure characteristic of the 260 m horizon is reconstructed when 
pumping “unclarified” water (Figure 4). Pump performances are recalculated, and the 
results are summarized in Table 2.

Table 2. Recalculating the operating parameters of TsNS(K) 300-360 multistage centrifugal 
pump  

Таблица 2. Пересчет эксплуатационных показателей насоса ЦНС(К) 300-360 

 

Indicator 
Point number 

1 2 3 4 5 6 

When pumping water for one step of TsNS(K) 300-360  
Q, m3/h 0 75 150 225 300 375 

Н, m 67.0 68.0 67.5 66.0 60.0 48.5 

When pumping water for six steps of TsNS(K) 300-3600  
Q, m3/h 0 75 150 225 300 375 

Н, m 341.70 346.80 344.25 336.60 306.00 247.35 

When pumping “unclarified” water for one step of TsNS(K) 300-360  
Q, m3/h 0 66 132 198 264 330 

Н, m 58.3 59.2 58.7 57.4 52.2 42.2 

When pumping “unclarified” water for six steps of TsNS(K) 300-360 
Q, m3/h 0 66 132 198 264 330 

Н, m 304.3 301.7 299.5 292.8 266.2 215.2 

It should be noted that to construct the head-capacity characteristic curve (Figure 4), 
the calculations were carried out under the condition that the pump was new and not 
subject to wear. When operating on “unclarified” water [12–15], the real characteristic of 
the pump will rest even lower along the y-axis.

Conclusion. The research results are as follows:
– when the pump operates on “unclarified” water, the actual mode is beyond the 

optimal zone of the pump;
– if productivity falls, the operating time of all dewatering pumps increases by three 

times due to the constant water inflow;
– if the depth and productivity of the mine and therefore water inflows increase,  

the risk and threat of flooding increases (the time for pumping out normal water inflow is 
20 hours, and the enterprise will require additional measures to increase the drainage 
capacity, which will lead to additional capital costs).

As a result of the calculation, it can be concluded that the multistage centrifugal pumps 
TsNS operation on “unclarified” water is unsafe and requires technical and technological 
measures to clarify the water before it enters the pumps.
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Исследование внешних и внутренних рабочих процессов горных машин 
при работе на «неосветленной» воде в подземных условиях

Габбасов Б. М.1, Курочкин А. И.1, Мажитов А. М.1, Корнилов С. Н.1
1 Магнитогорский государственный технический университет им. Г. И. Носова, Магнитогорск, Россия.

Реферат
Введение. В статье рассмотрены вопросы исследования горно-шахтного водоотлива, включающие 
изучение рабочих процессов центробежных насосных установок, обеспечивающих перекачку 
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«неосветленной» воды в тяжелых подземных условиях. Решение этих вопросов в настоящее время 
имеет высокую практическую и научную значимость. 
Методология проведения исследования. Выполнены анализ и обобщение научно-практического 
опыта в области горно-шахтного водоотлива, рассмотрены режимы работы центробежных 
насосов и обозначены перспективные задачи исследования в данной области. Так, непрерывное 
поступление грунтовых вод в выработки шахты требует обеспечения бесперебойной работы 
насосных установок. Одним из самых распространенных типов водоотливных установок являются 
центробежные секционные насосы, которые при правильной эксплуатации в полной мере 
выполняют свои функции. Однако перекачка «неосветленной» воды требует разработки методики 
по определению оптимальных режимов работы центробежных насосов в данных условиях работы. 
Результаты и их анализ. Для обоснования эффективности предложенных решений и выводов 
представлены: исследования по определению зависимостей гидравлического, объемного и 
механического КПД от режимов работы насосов; анализ рабочих процессов, происходящих в 
центробежных насосах при работе их на «неосветленной» воде; методика и расчет напорной 
характеристики центробежного насоса типа ЦНС (центробежный насос секционный).
Область применения результатов. Результаты исследований, выполненных в работе, 
рекомендованы к внедрению для всех предприятий, ведущих подземные горные работы с 
применением шахтного водоотлива.

Ключевые слова: шахтные центробежные насосы; оптимальные режимы работы; коэффициент 
полезного действия; напорная характеристика; гидравлические потери; коэффициент 
быстроходности.
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