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Abstract
Introduction. The solution of certain problems of geomechanics and geotechnology is 
increasingly demanding indirect express methods for rock mechanical properties assessment, 
including the methods using the Schmidt hammer. Schmidt hammer application does not 
require a specialized set of testing equipment and highly qualified personnel to maintain this 
equipment. Tests are carried out directly in the field.
Research objective is to estimate the possibility of using indirect express methods to determine 
the crushability indices and the path of least resistance.
Methods of research. The indicators estimation by indirect express methods is demonstrated 
through the serpentinite rocks of the Jitikara chrysotile-asbestos deposit which were submitted 
to the related field and laboratory tests. In local areas of the exposed rock, in the field 
environment, measurements were made with a Schmidt hammer according to the ASTM method. 
Rock samples were additionally tested for compressive strength in laboratory conditions using 
specialized press machines.
Results. Empirical dependences of the serpentinite rock crushability on the ultimate uniaxial 
compressive strength and the Schmidt hammer face rebound value were established.  
A comparative analysis was carried out with empirical dependencies established by other 
authors. A method for calculating the optimal path of least resistance for a blasting pattern is 
proposed based on the established dependencies.
Conclusions. Based on the results, it was found that the express method for assessing the 
crushability indices and the size of the path of least resistance using a Schmidt hammer is quite 
efficient and can be successfully applied for express assessment of physical and mechanical 
properties variability at Russian mining enterprises. However, it should be taken into account 
that Schmidt hammers cannot be used in certain mining and geological conditions without 
laboratory calibration of all devices planned for use.

Keywords: Schmidt hammer; ultimate compressive strength; rebound value; crushability; 
path of least resistance; serpentinite.

Introduction. At all stages of field development, knowledge about the strength and 
deformation properties of rock building up the mine field is crucial since these particular 
indicators determine the technological solutions for successful mineral extraction.

Hard rock preparation by separating it from the main mass is usually carried out by 
drilling and blasting. The quality of rock mass preparation is determined by a number of 
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indicators: boulder frequency, granulometric composition and the nature of rock mass 
disintegration after blast. The main quality coefficient is the output of oversized fractions 
in the blasted rock mass, i.e. the quality of rock mass crushing.

Сrushing is widely used in minerals preparation for processing, their beneficiation,  
and in the production of building materials. Therefore, the characteristics of rock 
crushability are important in order to calculate the parameters of rock mass preparation by 
blasting, as well as to clarify the strength characteristics of rocks whose properties change 
with mining depth growth.

Crushability is rock resistance to crushing on exposure to a dynamic load. Crushability 
is determined by the energy estimation of the failure of rock which is in the state of  
a combined stress. There are six classes of crushability (Table 1).

Table 1. Classes of rock crushability  
Таблица 1. Классы дробимости горных пород 

Class Rock characteristic Crushability Vmax, cm3 

I Extremely hard to crush  Less than 1.8 
II Very hard to crush 1.8–2.7 
III Hard to crush 2.7–4.0 
IV Medium crushability 4.0–6.0 
V Fragile 6.0–9.0 
VI Very fragile More than 9.0 

 

Methods of research. At A. A. Skochinsky Institute of Mining, L. I. Baron,  
V. M. Kurbatov and R. V. Orlov developed a method for determining rock crushability through 
rock relative resistance to crushing under shock loading [1, 2]. Crushability is determined 
by the granulometric composition of the products of a 50–70 g sample destruction after a 
one-time drop of a 16 kg load on it from a height of 0.5 m. The crushability index (cm3) is 
numerically equal to the volume of the fraction that passed through a screen with the holes 
of dmax = 7 mm, and is determined by the formula: Vmax = m7/ρ where m7 is the mass of the  
–7 mm fraction, g; ρ is the volumetric mass of rock, g/cm3.

This approach is quite convenient in the field. However, one of the authors notes that 
data for one fraction are unreliable. A complete analysis of crushed rock granulometric 
composition increases the labor intensity of the research. A specific distribution of lumps 
of different sizes is a statistical realization of only one possible test result, which negatively 
affects the accuracy of the data obtained [3].

There are also methods for determining crushability, in which the pieces are subjected to 
pounding, abrasion, and crushing in closed vessels. Such tests are carried out in laboratory 
conditions using expensive press, measuring, and auxiliary equipment, therefore being 
rather labor and time intensive. The development of reasonable, effortless and efficient 
express methods for determining crushability directly in the field will increase the speed 
of obtaining and processing the data necessary to make and correct process decisions at a 
production site in time.

The solution of certain problems of geomechanics and geotechnology is increasingly 
demanding indirect express methods for rock mechanical properties assessment, 
including the methods using the Schmidt hammer. Schmidt hammer application does not 
require a specialized set of testing equipment and highly qualified personnel to maintain 
this equipment. Tests are carried out directly in the field. Due to its wide usage in rock 
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mechanics, a non-destructive method for assessing marginal rock strength properties with 
a Schmidt hammer has been adopted by the International Society for Rock Mechanics 
(ISRM) and American Society for Testing and Materials (ASTM).

Unlike laboratory methods, the measurement result of the express method of rock 
mechanical characteristics determination is the Schmidt hammer face rebound value.  
To move from the rebound value Hr to mechanical characteristics, it is required to 
determine dependences between the determined properties and the Hr value in laboratory 
conditions with further calibration of the instrument (Schmidt hammer).

One of the main mechanical properties of rocks is the ultimate uniaxial compressive 
strength σcompr, MPa [4–8]. The calibration of Schmidt hammers is traditionally performed 
for this characteristic specifically. Numerous empirical formulas described by linear, 
power, and exponential dependences are found in a number of national and foreign 
scientific works [9–24].

Table 2. Empirical dependencies of the ultimate strength in a sample and crushability on the  
                                                      Schmidt hammer face rebound value  
Таблица 2. Эмпирические зависимости предела прочности в образце и дробимости  
                                                  от величины отскока молотка Шмидта 

Author (year) Type of rocks 
Ultimate uniaxial 

compressive strength 
σcompr, MPa 

Crushability Vmax, cm3  

Xu et al.  
(1990) [7] 

Prasinites 2,99exp(0,06 )Hr  435
2,99exp(0,06 ) 9Hr +

 

Serpentinites 2,98exp(0,063 )Hr  435
2,98exp(0,063 ) 9Hr +

 

Gabbro 3,78exp(0,05 )Hr  435
3,78exp(0,05 ) 9Hr +

 

Karaman et al. 
(2015) [12] 

Igneous rock 1,880,097Hr  
188

435
0,097 9Hr +

 

IM UB RAS, 
Kharisov T. F.  
et al. (2020) [18] 

Serpentinites 0,0017exp(0,14 )
 0,3 9 0,0017

Hr
Hr

+
+ + −

 
435

0,0017exp(0,14 ) 0,3 9Hr Hr+ +
 

 

It is known that the rock lumps resistance to disrupturing and crushing is determined by 
the tensile and compressive strength. O. G. Latyshev established the following empirical 
relationship between crushability and hardness of effusive rocks, which is expressed by 
the formula [25]:

   

 
 
 

2 
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where f is the hardness coefficient according to M. M. Protodyakonov. 

The correlation ratio η = 0.76 obtained for formula (1) indicates the statistical 
significance of the dependence. 
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( )compr max0,678exp 0,065V .σ = −  (6) 

 
The coefficient of variation in this case is 11.8%. 
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formula: 
 

,Mq
V

=  (7) 

 
where M is the mass of the explosive charge in the borehole, kg; V is the volume of 
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The mass of the explosive charge is calculated based on the known expression: 
 

2

charge explosive ,
4
dM l π

= ρ 
 

 (8) 

                                                       (2)



Разрушение ГП              Русских А. П. и др. / Известия вузов. Горный журнал. № 5, 2023. С. 9–19

12

T
ab

le
 3

. T
he

 r
es

ul
ts

 o
f d

et
er

m
in

in
g 

th
e 

ul
tim

at
e 

un
ia

xi
al

 c
om

pr
es

si
ve

 s
tr

en
gt

h 
an

d 
th

e 
Sc

hm
id

t h
am

m
er

 fa
ce

 r
eb

ou
nd

 v
al

ue
 in

 th
e 

se
rp

en
tin

ite
s 

of
 th

e 
Ji

tik
ar

a 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  c
hr

ys
ot

ile
-a

sb
es

to
s 

de
po

si
t 

Т
аб

ли
ца

 3
. 

Ре
зу

ль
та

ты
 о

пр
ед

ел
ен

ия
 п

ре
де

ло
в 

пр
оч

но
ст

и 
пр

и 
сж

ат
ии

 и
 в

ел
ич

ин
ы

 о
тс

ко
ка

 м
ол

от
ка

 Ш
м

ид
та

 в
 с

ер
пе

нт
ин

ит
ах

 Д
ж

ет
ы

га
ри

нс
ко

го
  

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 м

ес
то

ро
ж

де
ни

я 
хр

из
от

ил
-а

сб
ес

та
 

Pa
ra

m
et

er
 

Ty
pe

 o
f r

oc
k 

M
ea

n 
va

lu
e 

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n,
 %

 

Ap
po

pe
ri

do
tit

e 
se

rp
en

tin
ite

 
 

H
r 

67
,0

 
62

,0
 

70
,0

 
71

,5
 

68
,0

 
66

,5
 

59
,0

 
67

,0
 

69
,0

 
64

,5
 

66
,4

5 
5,

65
 

σ c
om

pr
 

27
,8

 
53

,0
 

48
,4

 
33

,2
 

38
,2

 
40

,9
 

39
,6

 
30

,8
 

33
,0

 
40

,9
 

38
,5

8 
20

,3
2 

Ap
po

du
ni

te
 c

hr
ys

ot
ile

-li
za

rd
ite

 se
rp

en
tin

ite
 

 
H

r 
68

,0
 

56
,5

 
70

,5
 

58
,0

 
63

,0
 

62
,0

 
66

,5
 

59
,0

 
55

,5
 

61
,5

 
62

,0
5 

8,
1 

σ c
om

pr
 

20
,2

 
30

,7
 

29
,5

 
22

,0
 

29
,9

 
22

,8
 

24
,5

 
29

,1
 

27
,6

 
28

,7
 

26
,5

0 
14

,2
7 

Ap
po

pe
ri

do
tit

is
-li

za
rd

ite
 se

rp
en

tin
ite

 
 

H
r 

67
,0

 
69

,5
 

70
,5

 
64

,0
 

67
,5

 
72

,0
 

66
,0

 
65

,5
 

69
,0

 
66

,5
 

67
,7

5 
3,

64
 

σ c
om

pr
 

45
,7

0 
44

,1
0 

59
,4

0 
46

,1
0 

64
,5

0 
52

,3
0 

50
,0

0 
54

,8
0 

61
,9

0 
47

,8
0 

52
,6

6 
13

,7
4 

Ap
po

du
ni

te
 li

za
rd

ite
 se

rp
en

tin
ite

 
 

H
r 

49
,0

 
52

,5
 

53
,0

 
62

,5
 

51
,0

 
39

,0
 

42
,0

 
42

,0
 

58
,5

 
55

,0
 

50
,4

5 
15

,0
3 

σ c
om

pr
 

20
,6

 
5,

9 
24

,0
 

21
,0

 
21

,7
 

15
,9

 
20

,9
 

22
,7

 
18

,1
 

20
,0

 
19

,0
8 

27
,0

1 
Li

za
rd

ite
 a

sb
es

to
s-

be
ar

in
g 

se
rp

en
tin

ite
  

 
H

r 
50

,0
 

53
,0

 
62

,5
 

56
,0

 
63

,0
 

61
,5

 
56

,0
 

54
,0

 
58

,5
 

59
,0

 
57

,3
5 

7,
52

 
σ c

om
pr

 
18

,5
 

24
,4

 
14

,7
 

29
,9

 
23

,6
 

24
,0

 
27

,1
 

18
,9

 
24

,5
 

26
,2

 
23

,1
8 

19
,6

 
Li

za
rd

ite
 se

rp
en

tin
ite

 
 

H
r 

56
,0

0 
63

,0
0 

63
,5

0 
71

,5
0 

65
,0

0 
70

,5
0 

65
,0

0 
61

,0
0 

73
,5

0 
73

,5
0 

66
,2

5 
8,

78
 

σ c
om

pr
 

52
,3

0 
45

,8
0 

48
,7

0 
74

,6
0 

52
,8

0 
48

,0
0 

55
,6

0 
45

,9
0 

39
,1

0 
39

,3
0 

50
,2

1 
20

,1
7 

Li
za

rd
ite

 ta
lc

os
e 

se
rp

en
tin

ite
 

 
H

r 
64

,0
 

67
,5

 
75

,5
 

60
,5

 
63

,5
 

68
,0

 
70

,0
 

59
,0

 
62

,5
 

60
,5

 
65

,1
0 

7,
87

 
σ c

om
pr

 
24

,4
 

33
,2

 
32

,4
 

39
,1

 
36

,0
 

33
,8

 
32

,1
 

32
,6

 
29

,9
 

30
,6

 
32

,4
1 

11
,9

1 
Ap

po
pe

ri
do

tit
e 

ch
ry

so
til

e-
liz

ar
di

te
 se

rp
en

tin
ite

 
 

H
r 

76
,5

 
73

,0
 

81
,5

 
77

,0
 

76
,5

 
81

,0
 

81
,0

 
81

,5
 

73
,5

 
65

,5
 

76
,7

0 
6,

63
 

σ c
om

pr
 

13
7,

2 
10

6,
0 

95
,5

 
14

5,
2 

16
6,

2 
68

,2
 

12
5,

8 
12

9,
8 

12
0,

1 
11

0,
1 

12
0,

41
 

22
,7

8 



Russkikh A. P. et al. / Minerals and Mining Engineering. No. 5, 2023. Pp. 9–19                rock breaking

13

Thus, by combining formulae (1) and (2), it is possible to obtain the ultimate uniaxial 
compressive strength from the crushability index:
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where d is the explosive charge diameter, m; lcharge is the length of the explosive charge, m;  
ρexplosive is the density of the explosive, kg/m3; V is the volume of blasted rocks, m3.  
v is calculated by the formula: 
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where d is the explosive charge diameter, m; lcharge is the length of the explosive 
charge, m; ρexplosive is the density of the explosive, kg/m3; V is the volume of blasted 
rocks, m3, calculated by the formula:  
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where m is the burden-to-spacing ratio; W0 is the PLR size, m; Leff is the effective 
length of the borehole; in open-pit mining, Leff corresponds to the height of the bench, 
m. 

By simultaneous solution of formulae (5)–(9), the dependence is obtained between 
the PLR size and the Schmidt hammer face rebound value for serpentinites of the 
Jitikara deposit: 
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It is obvious that if other empirical dependences (Table 2) are used instead of 

formula (5), PLR value can also be obtained for other lithotypes as well. 
Results. The possibility of the dependences practical application is considered on 

the example of serpentinite rocks of the Jitikara deposit. 
At the deposit, in local areas of the exposed rock, in the field environment, 

measurements were made with a Schmidt hammer according to the ASTM method. 
Rock samples were additionally tested for compressive strength in laboratory 
conditions using specialized press machines (Table 3). 

Based on the formulae given in Table 2, the dependences of rock crushability and 
PLR sizes on the Schmidt hammer face rebound value are plotted (Figures 1 and 2). 

Comparative analysis of the dependencies makes it possible to make the following 
conclusions. 

It follows from the graphs that both rock crushability and the PLR sizes vary in a 
fairly wide range even for the same lithotype (serpentinites, dependencies of IM UB 
RAS and Xu) when formulae obtained in this research and formulae obtained by other 
researchers are used in calculations (Table 2). These discrepancies are obviously 
determined both by the difference in the physical and mechanical properties of 
particular lithotypes in different deposits, and by different characteristics of the 
applied Schmidt hammers, which can be of two types: L and N. 

However, the general trend in the dependences of crushability and PLR size on Hr 
remains for various lithotypes: gabbro, prasinites, igneous rocks, and serpentinites. 
With an increase in the the Schmidt hammer face rebound, the values of both Vmax and 
W0 decrease logarithmically and non-linearly. 

So, with an increase in the rebound value from 10 to 40 (4 times), the crushability 
of serpenitinites changes (according to the IM UB RAS formula) from 37 to 4 cm3, 
i.e., more than 9 times. A further increase in rebound does not lead to such a 
significant increase in crushability. As Hr increases from 40 to 90, Vmax smoothly 
decreases from 4 to 1 cm3. 

When using an indirect assessment of rock crushability, an increased control of 
accuracy at low values of the Schmidt hammer face rebound (up to 40–60) can be 
recommended. With rebounds of 60 and more, field measurement errors will have a 
minor effect on the result of crushability and PLR determination. 

It is therefore important to calibrate specific models of the Schmidt hammer in 
laboratory conditions for the rocks and lithotypes of the deposit where they are 
planned to be used. 

Conclusions. Based on the research results, it can be concluded that the express 
method for assessing crushability indices and PLR size using a Schmidt hammer is 
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Figure 1. Dependences of rock crushability on the Schmidt hammer face rebound value 

Рисунок 1. Зависимость дробимости пород от величины отскока бойка молотка Шмидта 
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Results. The possibility of the dependences practical application is considered on the 
example of serpentinite rocks of the Jitikara deposit.

At the deposit, in local areas of the exposed rock, in the field environment, measurements 
were made with a Schmidt hammer according to the ASTM method. Rock samples were 
additionally tested for compressive strength in laboratory conditions using specialized 
press machines (Table 3).
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Based on the formulae given in Table 2, the dependences of rock crushability and PLR 
sizes on the Schmidt hammer face rebound value are plotted (Figures 1 and 2).

Comparative analysis of the dependencies makes it possible to make the following 
conclusions.

It follows from the graphs that both rock crushability and the PLR sizes vary in a 
fairly wide range even for the same lithotype (serpentinites, dependencies of IM UB RAS  
and Xu) when formulae obtained in this research and formulae obtained by other researchers 
are used in calculations (Table 2). These discrepancies are obviously determined both 
by the difference in the physical and mechanical properties of particular lithotypes in 
different deposits, and by different characteristics of the applied Schmidt hammers, which 
can be of two types: L and N.

However, the general trend in the dependences of crushability and PLR size on Hr 
remains for various lithotypes: gabbro, prasinites, igneous rocks, and serpentinites.  
With an increase in the the Schmidt hammer face rebound, the values of both Vmax and W0 
decrease logarithmically and non-linearly.

 
Figure 2. Dependence on the PLR size and the Schmidt hammer face rebound value 

Рисунок 2. Зависимость величины линии наименьшего сопротивления от величины отскока бойка  
                                                                     молотка Шмидта 
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So, with an increase in the rebound value from 10 to 40 (4 times), the crushability 
of serpenitinites changes (according to the IM UB RAS formula) from 37 to 4 cm3, 
i.e., more than 9 times. A further increase in rebound does not lead to such a significant 
increase in crushability. As Hr increases from 40 to 90, Vmax smoothly decreases  
from 4 to 1 cm3.
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When using an indirect assessment of rock crushability, an increased control of accuracy 
at low values of the Schmidt hammer face rebound (up to 40–60) can be recommended. 
With rebounds of 60 and more, field measurement errors will have a minor effect on the 
result of crushability and PLR determination.

It is therefore important to calibrate specific models of the Schmidt hammer in 
laboratory conditions for the rocks and lithotypes of the deposit where they are planned 
to be used.

Conclusions. Based on the research results, it can be concluded that the express 
method for assessing crushability indices and PLR size using a Schmidt hammer is quite 
effective and can be successfully used for express assessment of physical and mechanical 
properties variability at Russian mining enterprises.

However, it should be taken into account that Schmidt hammers cannot be used in certain 
mining and geological conditions without laboratory calibration of all devices planned  
for use. The accuracy of field measurements at small rebound values of the Schmidt 
hammer should also be considered, which is easily achieved by standard methods,  
i.e. increasing the number of measurements and carrying out their statistical processing.
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Исследование физико-механических свойств пород для экспресс-оценки 
параметров дробимости в условиях массива хризотил-асбеста
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Реферат
Введение. При решении ряда задач геомеханики и геотехнологии все более актуальными и 
востребованными становятся непрямые (косвенные) экспресс-методы оценки механических 
свойств пород, в том числе с применением молотка Шмидта. При использовании молотка 
Шмидта не требуется специализированного комплекса испытательного оборудования и 
высококвалифицированного персонала по обслуживанию этого оборудования. Испытания 
проводятся непосредственно в полевых условиях.
Цель работы. В настоящей работе оценена возможность применения косвенных экспресс-
методов при определении показателей дробимости и линии наименьшего сопротивления.
Методология. Оценка показателей косвенными экспресс-методами показана на примере 
серпентинитовых пород Джетыгаринского месторождения хризотил-асбеста,  
для которых были проведены соответствующие полевые и лабораторные испытания.  
На локальных участках обнаженного массива в полевых условиях производились измерения 
молотком Шмидта по методике ASTM. Дополнительно проводились испытания образцов 
горных пород на предел прочности при сжатии в лабораторных условиях с применением 
специализированного прессового оборудования.
Результаты. Установлены эмпирические зависимости дробимости серпентинитовых 
пород от предела прочности на одноосное сжатие и величины отскока бойка 
молотка Шмидта. Проведен сравнительный анализ с эмпирическими зависимостями, 
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установленными другими авторами. Предложена методика расчета оптимальной линии 
наименьшего сопротивления для паспорта буровзрывных работ на базе установленных 
зависимостей.
Выводы. На основании результатов установлено, что экспресс-метод оценки показателей 
дробимости и величины линии наименьшего сопротивления с применением молотка  
Шмидта является достаточно эффективным и может быть с успехом использован 
для экспресс-оценки изменчивости физико-механических свойств на российских 
горнодобывающих предприятиях. Однако следует учитывать, что нельзя использовать 
молоток Шмидта в конкретных горно-геологических условиях без лабораторной  
тарировки всех планируемых к использованию приборов.

Ключевые слова: молоток Шмидта; предел прочности на сжатие; величина отскока; 
дробимость; линия наименьшего сопротивления; серпентинит.
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