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Abstract
Introduction. It is essential to reliably estimate the geomechanical state of marginal zones at a mineable 
coal seam in order to ensure mining balance and safety. 
Research aim is to build the model of the state of a coal seam in its marginal zone based on the 
fundamental methods of the mechanics of granular materials, make calculations within the framework 
of the model, analyze the results and compare them with the results obtained by the well-known methods.
Methodology. The problem of the stressed state of coal seam marginal zones is implemented by means 
of numerical solution of three boundary value problems of limit equilibrium theory for a range of typical 
areas situated in these zones. The criterion of limit state beginning is concurrent compliance with 
Coulomb–Mohr stratum condition and Mohr–Kuznetsov condition along the contact with rock wall.
Results. It has been shown that the components of stress field change non-monotonically along the seam 
roof. Sections with constant stresses are changed by sections with stresses nonlinear increase.  
With distance from the marginal part into the depth of the massif, the size of sections with constant 
stresses decreases. The obtained stress results have been compared with the results obtained with the use 
of voltage change exponential formula. The dimensions of seam marginal zone have been determined 
with rather close results of two approaches.
Summary. Polynomial approximation of the obtained graphs allows accurately replace the results of 
numerical solution to the limit state problem by analytical functions and simplify the solution to the 
problem of the enclosing rock stressed state.

Key words: rock mass; coal seam; mine; limit stress seam zones; Coulomb–Mohr and Mohr–
Kuznetsov strength criteria.

Introduction. Evaluation of stress-strain state of the rock mass enclosing a coal 
seam and the mine working within it is an important and relevant scientific problem. 
The presence of the limit stress zones in seam marginal parts cause various geodynamic 
events: rockbursts, rock mass outbursts from mine faces, soil heave, and significant 
roof displacement [1–8].

Data on seam limit stress state in the marginal zone is essential in order to forecast 
the estimates of geodynamic effects. It is evident that results obtained as early as at the 
stage of mining enterprise design and before mining are important as soon as they make 
it possible to avoid expensive field experiments. Physical-mathematical simulations 
based on the main provisions, principles and methods of deformable solid mechanics 
and taking into account the fullest data on the environment under investigation  
[5, 9–16] can provide reliable results and forecast estimates of the geomechanical state 
of massifs.

From this point of view, G. L. Firsenko approach, based on the V. V. Sokolovsky 
fundamental methods for granular materials calculation [12], clearly reflects stress-
strain state of a coal-bearing mass. Results obtained within the simulation developed by 
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G. L. Firsenko are in good agreement with the results of field experiments with the 
approach successfully applied by researches [13–15] in order to estimate  
the geomechanical state of a coal seam and its soft rock and in the vicinity of the geological 
disturbance.

A bearing pressure curve is defined approximately in the form of an exponential 
function, and this is the main disadvantage. It makes it possible to avoid solving 
nonlinear differential equations of media limit state, but it does not estimate the accuracy 
of the solution as soon as there was no complete solution to nonlinear equations of the 
limit state.

The present research states the following tasks. Firstly, calculate seam marginal 
zone by numerical integration of the limit-state differential equations. Secondly, fulfill 
the comparative analysis of the calculation results and the results obtained by  
G. L. Firsenko approach, and ascertain validity limits of the latter.

Problem statement and its solution. In the rock mass simulated by a weightless 
plane there is a mine working with a rectangular cross section b x h in size at the depth 
of H through the coal seam with m thickness. Coal seam strength characteristic: C – the 
cohesion coefficient, ρ – the angle of shear resistance; they are much less than rock 
strength characteristic of the main mass, but they exceed the cohesion coefficient C' and 
the angle of shear resistance ρ' at seam contacts with the remaining mass. Coordinate 
system y0z is tied to the middle of the seam edge. It is believed that digging is fulfilled 
at the depth which causes limit stress (plastic) zones generate at seam marginal parts. 
The aim of solution to the problem is to obtain quantitative and qualitative results of 
stresses distribution in seam marginal zone.

Simultaneous survey of general and special conditions of the limit state allows 
obtaining a formula for an angle between the contact between the mass and the friction 
plane in a coal seam in the points at this contact [5, 10]
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0 – compressive strength of a seam. 

It is obvious that there is only vertical main stress 1, equal to 0, which acts at 
coal seam uncovering, while main stress 3 is equal to zero. Formula (1), after 
substituting formulae (2) into it, accepting that 1 = 0, 3 = 0, takes the form 
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Evaluation of the limit state of the seam itself is reduced to the solution of two 

differential equations obtained by means of substituting the criterion of Coulomb–
Mohr limit state into the system of differential equation of equilibrium, complying 
with the conditions at the edges of the area. 

The obtained system of equations is nonlinear and refers to hyperbolic equations. 
In this system, mean adjusted stress  and angle  between the direction of the main 
stress 1 and y axis are unknown. 

Main stresses 1 and 3 are tied with  and angle  by the following ratios [5, 10, 
12]: 
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where σ – mean adjusted stress; σ and the parameter c are determined by the formula
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σ0 – compressive strength of a seam.

It is obvious that there is only vertical main stress σ1, equal to σ0, which acts at coal 
seam uncovering, while main stress σ3 is equal to zero. Formula (1), after substituting 
formulae (2) into it, accepting that σ1 = σ0, σ3 = 0, takes the form
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Main stresses σ1 and σ3 are tied with σ and angle φ by the following ratios [5, 10, 12]:
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When solving hyperbolic equations, a method of characteristics (characteristic 

curves) is used, significantly simplifying differential equations. They physically 
coincide with glide lines – directed lines in the medium where lateral faulting is 
maximum [12]. 

Despite the fact that at glide lines the system of equation simplifies, in general, it is 
integrated only numerically, its solution reducing to some table completion with the 
use of recurrent relations obtained at differential relations substitution for their finite-
difference expressions [12]. 

Depending on boundary conditions there are three boundary value problems of 
limit state. 

At the first boundary value problem, there are point coordinates y, z specified at the 
boundary of the area, as well as stress  and angle . According to these values and 
recurrent ratios, a slip-line network is built, and ,  in its nodes are determined.  

At the second boundary value problem, boundary conditions are specified at two 
boundaries of the area, and its solution, just like at the first boundary value problem, is 
carried out in accordance with the recurrent relations. 

At the third boundary value problem, there are coordinates of glide line of one 
family and values  and  specified at one boundary. At the other boundary, two finite 
or differential relations between the coordinates of the second system of glide lines are 
known, as well as  or , belonging to other system of glide lines. The development of 
a slip-line network and other values calculation is carried out by the same recurrent 
formulae. 

If boundary conditions in the first and second boundary value problems are simple 
enough, for example,  is constant, then they can be solved in closed (analytical) 
form: 

So, for example, at the uncovering of the seam, the following boundary conditions 
are specified –h/2  z  h/2; y = 0; 1 = 0; 3 = 0;  = 90. Consequently, the problem 
is a boundary value problem. The solution to the problem is quite simple. It is rather 
evident that glide lines of this area make up the network of isogonal lines which 
deviate from the vertical line to the angle of  (fig. 1), and the section itself 
represents the triangle prism VBV1, where stresses are constant and equal to the 
stresses at the boundary. 

Sections adjoining VBV1 area represent two symmetrical triangle prisms, VCB and 
V1C1B1, they are called Prandtl zones. The problem of building up a stress field in 
Prandtl zones refers to the second boundary value problem, and the solution can also 
be represented in a closed form. Glide lines within them consist of a cone of rays 
going out of the angular pints V and V1, and logarithmic spirals. Stresses along the 
radial glide lines are constant, while stresses along the logarithmic spirals change 
exponentially.  

In VCN (V1C1N1) area situated between two rectilinear boundaries, VN and VN1, the 
third boundary value problem is solved. As soon as the boundaries are rectilinear, the 
solution is closed and simple: a network of glide lines consists of two systems of 
isogonal lines with constant stresses. 

In a curvilinear rectangle BCDC1 the problem is the second boundary value 
problem and is solved in a closed form with a network of glide lines consisting of 
logarithmic spirals along which stresses change exponentially. 

In symmetrical sectors CDRN and C1DR1N1, the problem is referred to the second 
boundary value problem and has a closed solution. Glide lines along CN and DR 
boundaries consist of the radial line segments each possessing constant stresses. Along 
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Fig. 1. The scheme of a mine working and limit stress zones in a coal seam: 

1 – mine working, 2 – limit stress zones of a seam  
Рис. 1. Схема выработки и предельно напряженных зон в угольном пласте: 

1 – выработка, 2 – предельно напряженные зоны пласта 
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At the first boundary value problem, there are point coordinates y, z specified at the 
boundary of the area, as well as stress σ and angle φ. According to these values and 
recurrent ratios, a slip-line network is built, and σ, φ in its nodes are determined. 

At the second boundary value problem, boundary conditions are specified at two 
boundaries of the area, and its solution, just like at the first boundary value problem, is 
carried out in accordance with the recurrent relations.

At the third boundary value problem, there are coordinates of glide line of one 
family and values σ and φ specified at one boundary. At the other boundary, two finite 
or differential relations between the coordinates of the second system of glide lines are 
known, as well as σ or φ, belonging to other system of glide lines. The development of 
a slip-line network and other values calculation is carried out by the same recurrent 
formulae.

If boundary conditions in the first and second boundary value problems are simple 
enough, for example, σ is constant, then they can be solved in closed (analytical) form:

So, for example, at the uncovering of the seam, the following boundary conditions 
are specified –h/2 ≤ z ≤ h/2; y = 0; σ1 = σ0; σ3 = 0; φ = 90°. Consequently, the problem 
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is a boundary value problem. The solution to the problem is quite simple. It is rather 
evident that glide lines of this area make up the network of isogonal lines which deviate 
from the vertical line to the angle of ±ε (fig. 1), and the section itself represents the 
triangle prism VBV1, where stresses are constant and equal to the stresses  
at the boundary.

Sections adjoining VBV1 area represent two symmetrical triangle prisms, VCB and 
V1C1B1, they are called Prandtl zones. The problem of building up a stress field in 
Prandtl zones refers to the second boundary value problem, and the solution can also be 
represented in a closed form. Glide lines within them consist of a cone of rays going out 
of the angular pints V and V1, and logarithmic spirals. Stresses along the radial glide 
lines are constant, while stresses along the logarithmic spirals change exponentially. 

In VCN (V1C1N1) area situated between two rectilinear boundaries, VN and VN1, the 
third boundary value problem is solved. As soon as the boundaries are rectilinear,  
the solution is closed and simple: a network of glide lines consists of two systems  
of isogonal lines with constant stresses.

 
Fig. 2. Curves of stresses along the seam roof 

Рис. 2. Эпюры напряжений вдоль кровли пласта  
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In a curvilinear rectangle BCDC1 the problem is the second boundary value problem 
and is solved in a closed form with a network of glide lines consisting of logarithmic 
spirals along which stresses change exponentially.

In symmetrical sectors CDRN and C1DR1N1, the problem is referred to the second 
boundary value problem and has a closed solution. Glide lines along CN and DR 
boundaries consist of the radial line segments each possessing constant stresses. Along 
curvilinear segments CN and DR glide lines are logarithmic spirals where stresses 
change exponentially.

In triangle sections NRG and N1R1G1 the system of differential equations is no 
longer integrated in a closed form. In this case, it is solved numerically and refers to the 
third boundary value problem of limit state. At a line NR, boundary conditions are 
known, as soon as it is a junction line at CDRN area; at NG boundary, the coordinates 
of each point and the value of an undulating gradient φ are known, being easily 
determined from fig. 1 by formula
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Thereby, areas VCDR1G1N1C1B and V1C1DRGNCB as sectors represent the 

aggregate of sections with individual features of glide lines and stresses distribution in 
each section. 

These areas border on the other rectangular area DG1FG along DG and DG1 lines. 
Being nonuniform in the areas of the sectors, the network of glide lines is also 
nonuniform in DG1FG area. Boundary line DG actually consists of the rectilinear 
segment DR and a curvilinear segment RG. It follows from above that inside of 
DROR1 with rectilinear boundaries DR and DR1 within DG1FG area under 
consideration, the network of glide lines consists of the isogonal lines, and stresses in 
its nodes are constant everywhere. 

RG boundary of RGQO section, which is another section of the upper half of the 
given area, is curvilinear, and RO boundary is rectilinear. It follows from above that 
glide lines within the section consist of rectilinear and curvilinear segments. Stresses 
are constant along the straight lines, and alternating along the curvilinear segments. 
Within OQFQ1 section of the same area, the network of glide lines will be curvilinear, 
as soon as boundaries OQ and OQ1 of the section are curvilinear. Therefore, stresses 
within the section are alternating. 

The character of glide lines and stresses distribution in FGP area and the 
symmetrical FG1P1 area is possible to be determined in the same manner. Thus, at 
section GTQ of this area, the network of glide lines is isogonal, and stresses are 
constant. At QTAF section, the network of glide lines consists of rectilinear and 
curvilinear sections with alternating stresses. At ATP section, the network of glide 
lines is curvilinear, it means that the stresses within are alternating. 

The speculations above result in the conclusion on the character of stresses 
distribution along the mid-seam (along y axis) and along the seam roof (VP line). So, 
for instance, along OB, DO, VN, GT segments the stresses are constant, and along BD, 
OF, NG, TP segments they are alternating. 

Problem solution results and their analysis. Here’re the results of solving the 
problem of seam marginal part limit state. The results are obtained in the course of 
numerical solution of boundary value problems of limit state theory in a number of 
typical areas of seam marginal zone. The following parameters of a massif and a seam 
are accepted as source information: 0 = 10 MPa;  = 20; С = 0;  = 10; h = m = 3 
m. 

Fig. 2 shows distribution graphs (curves) of normal stress z (curve 1), y (curve 2) 
and shear stresses yz (curve 3) along the seam roof. They are built based on ratios (3), 
where  and  are determined during boundary value problems solution for the areas 
of the limit stress zone. 

The character of changes in stress curves proves the earlier speculations on stresses 
behaviour in the areas and at the sections of seam limit stress zone. Stresses along the 
roof actually do not change steadily. Sections with constant stress interchange with 
sections with nonlinear buildup of stress, and with distance from the edge of the seam, 
the intensity of stresses buildup grows, and the length of sections with constant 
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aggregate of sections with individual features of glide lines and stresses distribution in 
each section.

These areas border on the other rectangular area DG1FG along DG and DG1 lines. 
Being nonuniform in the areas of the sectors, the network of glide lines is also nonuniform 
in DG1FG area. Boundary line DG actually consists of the rectilinear segment DR and  
a curvilinear segment RG. It follows from above that inside of DROR1 with rectilinear 
boundaries DR and DR1 within DG1FG area under consideration, the network of glide 
lines consists of the isogonal lines, and stresses in its nodes are constant everywhere.

RG boundary of RGQO section, which is another section of the upper half of the 
given area, is curvilinear, and RO boundary is rectilinear. It follows from above that 
glide lines within the section consist of rectilinear and curvilinear segments. Stresses 
are constant along the straight lines, and alternating along the curvilinear segments. 
Within OQFQ1 section of the same area, the network of glide lines will be curvilinear, 
as soon as boundaries OQ and OQ1 of the section are curvilinear. Therefore, stresses 
within the section are alternating.

  
Fig. 3. Curves of stresses along the midline of a seam  

Рис. 3. Эпюры напряжений вдоль средней линии пласта 
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The character of glide lines and stresses distribution in FGP area and the symmetrical 
FG1P1 area is possible to be determined in the same manner. Thus, at section GTQ of 
this area, the network of glide lines is isogonal, and stresses are constant. At QTAF 
section, the network of glide lines consists of rectilinear and curvilinear sections with 
alternating stresses. At ATP section, the network of glide lines is curvilinear, it means 
that the stresses within are alternating.

The speculations above result in the conclusion on the character of stresses 
distribution along the mid-seam (along y axis) and along the seam roof (VP line).  
So, for instance, along OB, DO, VN, GT segments the stresses are constant, and along 
BD, OF, NG, TP segments they are alternating.

Problem solution results and their analysis. Here’re the results of solving the 
problem of seam marginal part limit state. The results are obtained in the course of 
numerical solution of boundary value problems of limit state theory in a number  
of typical areas of seam marginal zone. The following parameters of a massif and a seam 
are accepted as source information: σ0 = 10 MPa; ρ = 20°; С' = 0; ρ' = 10°; h = m = 3 m.

Fig. 2 shows distribution graphs (curves) of normal stress σz (curve 1), σy (curve 2) 
and shear stresses τyz (curve 3) along the seam roof. They are built based on ratios (3), 
where σ and φ are determined during boundary value problems solution for the areas of 
the limit stress zone.
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The character of changes in stress curves proves the earlier speculations on stresses 
behaviour in the areas and at the sections of seam limit stress zone. Stresses along the 
roof actually do not change steadily. Sections with constant stress interchange with 
sections with nonlinear buildup of stress, and with distance from the edge of the seam, 
the intensity of stresses buildup grows, and the length of sections with constant stresses 
reduces. Curves are built according to the results of boundary value problems for eight 
areas, the length of the limit stress zone being 14 m. 

  
Fig. 4. Curves of z stresses along the seam roof by two 

approaches  
Рис. 4. Эпюры напряжений z вдоль кровли пласта по двум 

подходам 
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Fig. 3 shows the graphs of normal stresses σz (curve 1), σy (curve 2) along the mid-
seam, which coincides with axis y. Shear stresses are absent as soon as at the symmetry 
axis shear stresses are equal to zero. It follows from fig. 3 that the values of stresses 
along the mid-seam are insignificant, but they are lower than the values  
of stresses along the roof of the seam at fig. 2.

When solving the elastoplastic problem, the use of the stress curves which have 
been obtained directly will result in the more complicated formulation of boundary 
conditions as compared to the analytical functions.

The obtained stress curves are approximated by the polynomials where the number 
of members is equal to the number of typical sections of the limit stress zone. In order 
to determine the coefficients of each polynomial, the system of algebraic equations is 
solved with the number equal to the number of the sections, equations right parts 
corresponding to the values of the determined stresses at the margins of the sections. 

Fig. 4 presents two curves of vertical stresses distribution. Curve 1 – a polynomial 
which approximates stresses σz, curve 2 is built by formulae (3) for σz, where the 
reduced stress σ is determined by G. L. Fisenko exponential dependence [5]
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It follows from the analysis of fig. 4 that the curve ordinates are close to each other 

within the limit stress section of about 4 m length. With a greater length of the section 
the difference in the ordinates grows, and with 14 m (4.44m) long limit zone it is about 
76.5%. 

Summary. A rigorous solution to the problem of seam limit stress zone calculation 
by the methods of the mechanics of granular materials. The solution consists in the 
successive numerical solution of nonlinear differential equations of limit state 
boundary problems for a range of typical areas in this zone. 

The graphs of normal stresses distribution along the seam roof, which have been 
built in the course of the problem solution, represent the aggregate of sections; 
sections with constant stresses are changed by sections with nonlinear increase. With 
the growth of abscissa, the length of the sections with constant stress reduces, and the 
intensity of stress growth at the sections of their nonlinear growth rises sharply. 

Graphs of stress distribution in seam limit stress zone, obtained through the 
proposed solution, are close enough to the graphs built by G. L. Fisenko exponential 
formula, only a small section having zones not more than one third of the seam height 
size. At the distance from the seam edge of four and a half seam heights, the 
difference between the results is significant and exceeds 75%. 
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Summary. A rigorous solution to the problem of seam limit stress zone calculation 
by the methods of the mechanics of granular materials. The solution consists in the 
successive numerical solution of nonlinear differential equations of limit state boundary 
problems for a range of typical areas in this zone.

The graphs of normal stresses distribution along the seam roof, which have been 
built in the course of the problem solution, represent the aggregate of sections; sections 
with constant stresses are changed by sections with nonlinear increase. With the growth 
of abscissa, the length of the sections with constant stress reduces, and the intensity of 
stress growth at the sections of their nonlinear growth rises sharply.

Graphs of stress distribution in seam limit stress zone, obtained through the proposed 
solution, are close enough to the graphs built by G. L. Fisenko exponential formula, 
only a small section having zones not more than one third of the seam height size.  
At the distance from the seam edge of four and a half seam heights, the difference 
between the results is significant and exceeds 75%.

   
REFERENCES

1. Petukhov I. M., Linkov A. M. The mechanics of rockbursts and outbursts. Moscow: Nedra 
Publishing; 1983. (In Russ.)

2. Chernov O. I., Puzyrev V. N. The forecast of coal and gas outbursts. Moscow: Nedra Publishing; 
1979. (In Russ.)

3. Zhang C., Canbulat I., Tahmasebinia F., Hebblewhite B. Assessment of energy release mechanisms 
contributing to coal burst. Int. J. Rock Min. Sci. Technol. 2017; 27: 3–7.

4. Shadrin A. V. Static and dynamic outburst hazard of coal seams. Bezopasnost truda v promyshlennosti = 
Occupational Safety in Industry. 2018; 4: 42–48. (In Russ.)

5. Fisenko G. L. Limit state of rock around mine workings. Moscow: Nedra Publishing; 1976.  
(In Russ.)

6. Napier J. A. L., Malan D. Simulation of tabular mine face advance rates using a simplified fracture 
zone model. Int. J. Rock Mech. Min. Sci. 2018; 109: 105–114.

7. Guo H., Yuan L. An integrated approach to study of strata behaviour and gas flow dynamics and its 
application. International Journal of Coal Science & Technology. 2015; 2 (1): 12–21.

8. Guo W., Xu F. Numerical simulation of overburden and surface movements for Wongawilli strip 
pillar mining. Int. J. Min. Sci. Technol. 2016; 26: 71–76.

9. Khristianovich S. A. Continuum mechanics. Moscow: Nauka Publishing; 1981. (In Russ.) 
10. Ruppeneit K. V. Some issues of rock mechanics. Moscow: Ugletekhizdat; 1954. (In Russ.)
11. Gao W. Study on the width of the non-elastic zone in inclined coal pillar for strip mining. Int. J. 

Rock Mech. Min. Sci. 2014; 72: 304–310.
12. Sokolovskii V. V. Granular materials statics. Moscow: Nauka Publishing; 1990. 272 с.
13. Cherdantsev N. V., Cherdantsev S. V. The analysis of the state of a coal mass with an in-seam working 

and fracture. Izvestiia RAN. Mekhanika tverdogo tela = Mechanics of Solids. 2018; 2: 110–121. (In Russ.)
14. Cherdantsev N. V. Solution to the problem of soil rock layer heaving in the in-coal working. 

Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 
2016; 8: 32–39. (In Russ.)

15. Cherdantsev N. V. Solving a problem on ejection of a dirt seam from the coal seam floor in  
the in-seam working. Gornyi informatsionno-analiticheskii biulleten (nauchno-tekhnicheskii zhurnal) = 
Mining Informational and Analytical Bulletin (scientific and technical journal). 2017; 5: 369–381.  
(In Russ.)

16. Klishin V. I., Klishin S. V. Mineral mining technology: Coal extraction from thick flat and steep 
seams. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 
2010; 2: 69–81. (In Russ.)

Received 16 May 2019

Information about authors:

Nikolai V. Cherdantsev – DSc (Engineering), leading researcher, Laboratory of Geomechanics and 
Geometrisation of Coal Fields, Federal Research Center of Coal and Coal Chemistry SB RAS.  
Е-mail: nvch2014@yandex.ru



 «Известия вузов. Горный журнал», № 7, 2019ISSN 0536-1028 75

DOI: 10.21440/0536-1028-2019-7-68-76

Построение решения задачи о состоянии угольного пласта 
методами механики сыпучей среды

Черданцев Н. В.1
1 Федеральный исследовательский центр угля и углехимии Сибирского отделения РАН, Кемерово, 
Россия. 

Реферат
Введение. Для обеспечения ритмичности и безопасности ведения горных работ необходимы на-
дежные прогнозные оценки геомеханического состояния приконтурных зон отрабатываемого 
угольного пласта.
Цель работы. Построение модели состояния угольного пласта в его краевой зоне на основе фун-
даментальных методов механики сыпучих сред, проведение в ее рамках вычислений, анализ полу-
ченных результатов и их сравнение с результатами, полученными известными методами.
Методология. Задача о напряженном состоянии краевых зон угольного пласта реализуется путем 
численного решения трех краевых задач теории предельного равновесия для ряда характерных об-
ластей, расположенных в этих зонах. Критерием наступления предельного состояния является 
одновременное соблюдение условий Кулона–Мора по пласту и Мора–Кузнецова по его контакту  
с боковыми породами.
Результаты. Показано, что компоненты поля напряжений изменяются вдоль кровли пласта не-
монотонно. Участки, на которых напряжения постоянны, сменяются участками нелинейного их 
возрастания, и по мере удаления от краевой части в глубь массива размеры участков с постоян-
ными напряжениями уменьшаются. Приведены сравнительные оценки полученных результатов 
напряжений с результатами, полученными с использованием экспоненциальной формулы измене-
ния напряжений. Установлены размеры приконтурной зоны пласта, в которых результаты по 
двум подходам достаточно близки друг другу.
Выводы. Аппроксимация полученных графиков полиномами позволяет с высокой степенью точно-
сти заменить результаты численного решения задачи предельного состояния аналитическими 
функциями и упростить решение задачи о напряженном состоянии вмещающего массива.

Ключевые слова: массив горных пород; угольный пласт; горная выработка; предельно напряжен-
ные зоны пласта; критерии прочности Кулона–Мора и Мора–Кузнецова.
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