TEOMEXAHUKA. PA3PYLLEHWE TOPHBLIX MOPOA

VIK 622.023.23 DOI: 10.21440/0536-1028-2019-7-68-76

Framing the solution to the problem of coal seam state by the methods
of the mechanics of granular materials

Nikolai V. Cherdantsev’
' Federal Research Center of Coal and Coal Chemistry SB RAS, Kemerovo, Russia
e-mail: nvch2014@yandex.ru

Abstract
Introduction. It is essential to reliably estimate the geomechanical state of marginal zones at a mineable
coal seam in order to ensure mining balance and safety.
Research aim is to build the model of the state of a coal seam in its marginal zone based on the
fundamental methods of the mechanics of granular materials, make calculations within the framework
of the model, analyze the results and compare them with the results obtained by the well-known methods.
Methodology. The problem of the stressed state of coal seam marginal zones is implemented by means
of numerical solution of three boundary value problems of limit equilibrium theory for a range of typical
areas situated in these zones. The criterion of limit state beginning is concurrent compliance with
Coulomb—Mohr stratum condition and Mohr—Kuznetsov condition along the contact with rock wall.
Results. It has been shown that the components of stress field change non-monotonically along the seam
roof. Sections with constant stresses are changed by sections with stresses nonlinear increase.
With distance from the marginal part into the depth of the massif, the size of sections with constant
stresses decreases. The obtained stress results have been compared with the results obtained with the use
of voltage change exponential formula. The dimensions of seam marginal zone have been determined
with rather close results of two approaches.
Summary. Polynomial approximation of the obtained graphs allows accurately replace the results of
numerical solution to the limit state problem by analytical functions and simplify the solution to the
problem of the enclosing rock stressed state.

Key words: rock mass; coal seam; mine; limit stress seam zones;, Coulomb—Mohr and Mohr—
Kuznetsov strength criteria.

Introduction. Evaluation of stress-strain state of the rock mass enclosing a coal
seam and the mine working within it is an important and relevant scientific problem.
The presence of the limit stress zones in seam marginal parts cause various geodynamic
events: rockbursts, rock mass outbursts from mine faces, soil heave, and significant
roof displacement [1-8].

Data on seam limit stress state in the marginal zone is essential in order to forecast
the estimates of geodynamic effects. It is evident that results obtained as early as at the
stage of mining enterprise design and before mining are important as soon as they make
it possible to avoid expensive field experiments. Physical-mathematical simulations
based on the main provisions, principles and methods of deformable solid mechanics
and taking into account the fullest data on the environment under investigation
[5, 9—16] can provide reliable results and forecast estimates of the geomechanical state
of massifs.

From this point of view, G. L. Firsenko approach, based on the V. V. Sokolovsky
fundamental methods for granular materials calculation [12], clearly reflects stress-
strain state of a coal-bearing mass. Results obtained within the simulation developed by
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G. L. Firsenko are in good agreement with the results of field experiments with the
approach successfully applied by researches [13—-15] in order to estimate
the geomechanical state of a coal seam and its soft rock and in the vicinity of the geological
disturbance.

A bearing pressure curve is defined approximately in the form of an exponential
function, and this is the main disadvantage. It makes it possible to avoid solving
nonlinear differential equations of media limit state, but it does not estimate the accuracy
of the solution as soon as there was no complete solution to nonlinear equations of the
limit state.

The present research states the following tasks. Firstly, calculate seam marginal
zone by numerical integration of the limit-state differential equations. Secondly, fulfill
the comparative analysis of the calculation results and the results obtained by
G. L. Firsenko approach, and ascertain validity limits of the latter.

Problem statement and its solution. In the rock mass simulated by a weightless
plane there is a mine working with a rectangular cross section b x 4 in size at the depth
of H through the coal seam with m thickness. Coal seam strength characteristic: C — the
cohesion coefficient, p — the angle of shear resistance; they are much less than rock
strength characteristic of the main mass, but they exceed the cohesion coefficient C'and
the angle of shear resistance p’ at seam contacts with the remaining mass. Coordinate
system y0z is tied to the middle of the seam edge. It is believed that digging is fulfilled
at the depth which causes limit stress (plastic) zones generate at seam marginal parts.
The aim of solution to the problem is to obtain quantitative and qualitative results of
stresses distribution in seam marginal zone.

Simultaneous survey of general and special conditions of the limit state allows
obtaining a formula for an angle between the contact between the mass and the friction
plane in a coal seam in the points at this contact [5, 10]
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where 6 — mean adjusted stress; ¢ and the parameter ¢ are determined by the formula
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o, — compressive strength of a seam.

It is obvious that there is only vertical main stress o, equal to 6, which acts at coal
seam uncovering, while main stress o, is equal to zero. Formula (1), after substituting
formulae (2) into it, accepting that 6, = 5, 6, = 0, takes the form
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o="4P o
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Evaluation of the limit state of the seam itself is reduced to the solution of two
differential equations obtained by means of substituting the criterion of Coulomb—Mohr
limit state into the system of differential equation of equilibrium, complying with the
conditions at the edges of the area.

The obtained system of equations is nonlinear and refers to hyperbolic equations.
In this system, mean adjusted stress ¢ and angle ¢ between the direction of the main
stress 6, and y axis are unknown.
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Main stresses 6, and o, are tied with ¢ and angle ¢ by the following ratios [5, 10, 12]:

o, —0[1+sm p)cos(2 J c;

(
(p)cos(2 )] (3)

= osin(p)sin(2¢) —c

c, —G[I—SID

When solving hyperbolic equations, a method of characteristics (characteristic
curves) is used, significantly simplifying differential equations. They physically
coincide with glide lines — directed lines in the medium where lateral faulting is
maximum [12].

Despite the fact that at glide lines the system of equation simplifies, in general, it is
integrated only numerically, its solution reducing to some table completion with the use
of recurrent relations obtained at differential relations substitution for their finite-
difference expressions [12].

Depending on boundary conditions there are three boundary value problems of limit
state.
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Fig. 1. The scheme of a mine working and limit stress zones in a coal seam:
1 — mine working, 2 — limit stress zones of a seam
Puc. 1. Cxema BbIpaOOTKH U IIPE/ICIIBHO HAIIPSIKEHHBIX 30H B YTOJFHOM IUIACTE:
1 — BbIpaboTKa, 2 — MpeenbHO HAMPSHKEHHBIC 30HBI IIacTa

At the first boundary value problem, there are point coordinates y, z specified at the
boundary of the area, as well as stress ¢ and angle ¢. According to these values and
recurrent ratios, a slip-line network is built, and o, ¢ in its nodes are determined.

At the second boundary value problem, boundary conditions are specified at two
boundaries of the area, and its solution, just like at the first boundary value problem, is
carried out in accordance with the recurrent relations.

At the third boundary value problem, there are coordinates of glide line of one
family and values ¢ and ¢ specified at one boundary. At the other boundary, two finite
or differential relations between the coordinates of the second system of glide lines are
known, as well as ¢ or @, belonging to other system of glide lines. The development of
a slip-line network and other values calculation is carried out by the same recurrent
formulae.

If boundary conditions in the first and second boundary value problems are simple
enough, for example, o is constant, then they can be solved in closed (analytical) form:

So, for example, at the uncovering of the seam, the following boundary conditions
are specified —1/2 <z <h/2;y = 0; 6, = 6; 6, = 0; ¢ = 90°. Consequently, the problem
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is a boundary value problem. The solution to the problem is quite simple. It is rather
evident that glide lines of this area make up the network of isogonal lines which deviate
from the vertical line to the angle of +¢ (fig. 1), and the section itself represents the
triangle prism VBV, where stresses are constant and equal to the stresses
at the boundary.

Sections adjoining VBV, area represent two symmetrical triangle prisms, V'CB and
V,C,B,, they are called Prandtl zones. The problem of building up a stress field in
Prandtl zones refers to the second boundary value problem, and the solution can also be
represented in a closed form. Glide lines within them consist of a cone of rays going out
of the angular pints V" and V|, and logarithmic spirals. Stresses along the radial glide
lines are constant, while stresses along the logarithmic spirals change exponentially.

In VCN (V,C|N,) area situated between two rectilinear boundaries, VN and VN, the
third boundary value problem is solved. As soon as the boundaries are rectilinear,
the solution is closed and simple: a network of glide lines consists of two systems
of isogonal lines with constant stresses.
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Fig. 2. Curves of stresses along the seam roof
Puc. 2. Dnropsl HanpspkeHUH BIOJIb KPOBIM ILIACTa

In a curvilinear rectangle BCDC, the problem is the second boundary value problem
and is solved in a closed form with a network of glide lines consisting of logarithmic
spirals along which stresses change exponentially.

In symmetrical sectors CDRN and C,DR|N,, the problem is referred to the second
boundary value problem and has a closed solution. Glide lines along CN and DR
boundaries consist of the radial line segments each possessing constant stresses. Along
curvilinear segments CN and DR glide lines are logarithmic spirals where stresses
change exponentially.

In triangle sections NRG and N,R G, the system of differential equations is no
longer integrated in a closed form. In this case, it is solved numerically and refers to the
third boundary value problem of limit state. At a line NR, boundary conditions are
known, as soon as it is a junction line at CDRN area; at NG boundary, the coordinates
of each point and the value of an undulating gradient ¢ are known, being easily
determined from fig. 1 by formula

(p=n—(6+8)=£+lp'+larcsin S{ﬂ(l—ﬁ).
2 2 2 sinp c
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Thereby, areas VCDR,G,N,C,B and V,C,DRGNCB as sectors represent the
aggregate of sections with individual features of glide lines and stresses distribution in
each section.

These areas border on the other rectangular area DG FG along DG and DG, lines.
Being nonuniform in the areas of the sectors, the network of glide lines is also nonuniform
in DG,FG area. Boundary line DG actually consists of the rectilinear segment DR and
a curvilinear segment RG. It follows from above that inside of DROR, with rectilinear
boundaries DR and DR, within DG, FG area under consideration, the network of glide
lines consists of the isogonal lines, and stresses in its nodes are constant everywhere.

RG boundary of RGQO section, which is another section of the upper half of the
given area, is curvilinear, and RO boundary is rectilinear. It follows from above that
glide lines within the section consist of rectilinear and curvilinear segments. Stresses
are constant along the straight lines, and alternating along the curvilinear segments.
Within OQFQ, section of the same area, the network of glide lines will be curvilinear,
as soon as boundaries OQ and OQ, of the section are curvilinear. Therefore, stresses
within the section are alternating.

Fig. 3. Curves of stresses along the midline of a seam
Puc. 3. Dnropsl HanpspKeHUH B0 CPEAHEH JTHHUY IUTACTa

The character of glide lines and stresses distribution in FGP area and the symmetrical
FG, P, area is possible to be determined in the same manner. Thus, at section GTQ of
this area, the network of glide lines is isogonal, and stresses are constant. At QTAF
section, the network of glide lines consists of rectilinear and curvilinear sections with
alternating stresses. At ATP section, the network of glide lines is curvilinear, it means
that the stresses within are alternating.

The speculations above result in the conclusion on the character of stresses
distribution along the mid-seam (along y axis) and along the seam roof (VP line).
So, for instance, along OB, DO, VN, GT segments the stresses are constant, and along
BD, OF, NG, TP segments they are alternating.

Problem solution results and their analysis. Here’re the results of solving the
problem of seam marginal part limit state. The results are obtained in the course of
numerical solution of boundary value problems of limit state theory in a number
of typical areas of seam marginal zone. The following parameters of a massif and a seam
are accepted as source information: 6, = 10 MPa; p =20°% C'=0; p'=10° A=m =3 m.

Fig. 2 shows distribution graphs (curves) of normal stress ¢_(curve /), 6 (curve 2)
and shear stresses T (curve 3) along the seam roof. They are built based on ratios (3),
where 6 and ¢ are determined during boundary value problems solution for the areas of
the limit stress zone.
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The character of changes in stress curves proves the earlier speculations on stresses
behaviour in the areas and at the sections of seam limit stress zone. Stresses along the
roof actually do not change steadily. Sections with constant stress interchange with
sections with nonlinear buildup of stress, and with distance from the edge of the seam,
the intensity of stresses buildup grows, and the length of sections with constant stresses
reduces. Curves are built according to the results of boundary value problems for eight
areas, the length of the limit stress zone being 14 m.
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Fig. 4. Curves of o, stresses along the seam roof by two
approaches

Puc. 4. Dnrops! HaNpsHKEHUH G, BAOIb KPOBIIH IUIACTA TI0 JBYM
M0X0J1aM

Fig. 3 shows the graphs of normal stresses o, (curve /), 6, (curve 2) along the mid-
seam, which coincides with axis y. Shear stresses are absent as soon as at the symmetry
axis shear stresses are equal to zero. It follows from fig. 3 that the values of stresses
along the mid-seam are insignificant, but they are lower than the values
of stresses along the roof of the seam at fig. 2.

When solving the elastoplastic problem, the use of the stress curves which have
been obtained directly will result in the more complicated formulation of boundary
conditions as compared to the analytical functions.

The obtained stress curves are approximated by the polynomials where the number
of members is equal to the number of typical sections of the limit stress zone. In order
to determine the coefficients of each polynomial, the system of algebraic equations is
solved with the number equal to the number of the sections, equations right parts
corresponding to the values of the determined stresses at the margins of the sections.

Fig. 4 presents two curves of vertical stresses distribution. Curve / — a polynomial
which approximates stresses ¢, curve 2 is built by formulae (3) for 6, where the
reduced stress ¢ is determined by G. L. Fisenko exponential dependence [5]

o=—20 o Wherekzz-—lJrS%npt '
2sinp m 1—sinp

It follows from the analysis of fig. 4 that the curve ordinates are close to each other
within the limit stress section of about 4 m length. With a greater length of the section
the difference in the ordinates grows, and with 14 m (4.44m) long limit zone it is
about 76.5%.
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Summary. A rigorous solution to the problem of seam limit stress zone calculation
by the methods of the mechanics of granular materials. The solution consists in the
successive numerical solution of nonlinear differential equations of limit state boundary
problems for a range of typical areas in this zone.

The graphs of normal stresses distribution along the seam roof, which have been
built in the course of the problem solution, represent the aggregate of sections; sections
with constant stresses are changed by sections with nonlinear increase. With the growth
of abscissa, the length of the sections with constant stress reduces, and the intensity of
stress growth at the sections of their nonlinear growth rises sharply.

Graphs of stress distribution in seam limit stress zone, obtained through the proposed
solution, are close enough to the graphs built by G. L. Fisenko exponential formula,
only a small section having zones not more than one third of the seam height size.
At the distance from the seam edge of four and a half seam heights, the difference
between the results is significant and exceeds 75%.
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IlocTpoenue penieHusi 321241 0 COCTOSIHMH YIOJbHOIO MJIACTA
MeTOoIaMM MeXaHUKHM ChINyYei cpeabl

Yepaanues H. B.!
! ®enepanbHBIl HCCIIENOBATENBCKHI IEHTP Yt U yriexumun Cudupckoro otaeneuus PAH, Kemepogo,
Poccus.

Peghepam
Beeoenue. [[ns obecneuenuss pummuyHOCmu 1 0€30NaACHOCU 6e0eHUs 20PHbIX pabom HeoOX00UMbl Ha-
0edICcHble NPOSHO3HbIE OYEHKU 2eOMEeXAHUYEeCKO20 COCHMOAHUS NPUKOHMYPHBIX 30H OmMpadamuléaemoco
Y2onvbHo2o niacma.
Lenv pabomul. Ilocmpoenue modenu coCmoaHUs Y20IbHO20 NIACMA 6 €20 KPaegoll 30He Ha 0CHO8e (yH-
OAMEHMANbHBIX MEMO008 MEXAHUKU CHINYYUX Cped, NPOGEOeHUe 8 ee PAMKAX 6bIYUCTIEHUl, aHAU3 NOTY-
YEHHBIX Pe3YNbMAMOE U UX CPAGHEHUe C Pe3YIbMamamu, NoayYeHHbIMY U36ECTHbIMU MEMOOAMU.
Memooonozusn. 3a0aua 0 HANPANCEHHOM COCIMOAHUU KPAEBLIX 30H Y20NbHO20 NAACMA Peanu3yemcs nymem
YUCIEeHHO20 peuenUs. mpex Kpaegvlx 3a0ay meopull npeoenbHo20 pagHo8ects Oisl paod Xapakmephvix 0o-
nacmeil, pacnonodcenHvlx 8 smux 3onax. Kpumepuem nacmynnenus npeoeivHo2o coOCMOAHUSA ABTAEMCS
oonogpemennoe cobniodenue ycaosuii Kynona—Mopa no nnacmy u Mopa—Ky3neyosa no eco konmaxkmy
¢ OOKOBbIMU NOPOOAMU.
Pesynvmamaul. Ilokasano, 4mo KOMNOHEHMbl NONSA HANPANHCEHUL USMEHAIOMCS 800Ib KPOGIU NIACMA He-
MOHOMOHHO. Y4acmxu, Ha KOMOPbIX HANPAICEHUS NOCMOAHHbL, CMEHAIOMCS YYACMKAMU HENUHEIHO20 UX
603pacmanys, u no mepe yodneHus om Kpaeeoi uacmu 6 21yob Maccuea pasmepul y4acmros ¢ nocmost-
HbIMU HANPAdICEHUAMU YMenbualomes. [Ipusedensvl cpasnumensusie OyeHKU NOTYYeHHbIX Pe3yIbmamos
HanpsadiceHuil ¢ pe3yromamami, NOAYYEHHLIMU C UCNONb30BAHUEM IKCNOHEHYUATLHOU DOPMYIbL UIMEHe-
HUSL HANPAJICeHUll. Ycmanoenenvl pazmepvl NPUKOHMYPHOU 30Hbl NAACMA, 6 KOMOPbIX Pe3yibmamyl no
08YM n0OX00am 00CMamoyHo 6uU3Ku opye opyey.
Bu1600v1. Annpoxcumayus noayuennbix epapuros NOTUHOMAMU NO3EOAEM C BbICOKOU CIMENEeHbI0 MOYHO-
cmu 3aMenums pe3ynomanmsl YUCIeHHO20 peuenus 3a0auu npeoenbHo20 COCMOAHUA AHATUMULECKUMU
@yHKYUAMU U ynpocmUumb peulenue 3a0adi 0 HANPsHCeHHOM COCMOAHUU EMeUalolye2o Maccusa.

Kniouesvle cnosa: maccug 2opuvix nopoo; YeoibHblil NIACM, 20PHASL 8blPpAOOMKA,; NPEOeNbHO HANPSIHCEH-
Hble 30Hbl niacma, kpumepuu npounocmu Kynona—Mopa u Mopa—Ky3neyosa.
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